

INTRODUCTION

(CPI) is a web-based app that guides and motivates students as they select activities which engage them in the possibility of pursuing a STEM+C career. The app is specifically designed to set women and underrepresented minorities on a path towards STEM careers.¹

A series of surveys (one baseline, four follow-up) are among the methods used to asses the longitudinal effectiveness of CPI.

However, with attrition of over 50% from the baseline to the follow surveys, it must be ensured that the sample is not becoming self selective over time especially with regards to student's psychological attitudes towards STEM that CPI hopes improve.

RESEARCH QUESTION: How do initial psychological attitudes towards STEM as indicated in the baseline survey predict attrition in the subsequent follow ups?

RESULTS

Logistic Regression Predicting Student Survey Taking

Predictor	В	SE B	р	df	е ^В		
Pulse 1, Dec. 2018							
(Intercept)	-3.083	0.606	0.000	466	0.046		
Comp. Usage	0.330	0.145	0.023*	466	1.391		
Math Class Eng.	0.458	0.149	0.002**	466	1.580		
Math Self Percep.	0.064	0.154	0.678	466	1.066		
STEM Career	-0.047	0.150	0.757	466	0.955		
Pulse 2, Feb. 2019							
(Intercept)	-2.844	0.602	0.000	466	0.058		
Comp. Usage	0.314	0.145	0.031*	466	1.369		
Math Class Eng.	0.257	0.147	0.080	466	1.293		
Math Self Percep.	0.239	0.155	0.123	466	1.269		
STEM Career	-0.104	0.150	0.490	466	0.902		
Pulse 3, Apr. 2019							
(Intercept)	-1.544	0.571	0.007	466	0.214		
Comp. Usage	0.397	0.143	0.006**	466	1.487		
Math Class Eng.	0.148	0.143	0.300	466	1.160		
Math Self Percep.	0.158	0.151	0.294	466	1.172		
STEM Career	-0.309	0.150	0.039*	466	0.734		
Pulse 4, Jun. 2019							
(Intercept)	-1.922	0.578	0.001	466	0.146		
Comp. Usage	0.266	0.143	0.063	466	1.304		
Math Class Eng.	0.209	0.144	0.146	466	1.232		
Math Self Percep.	0.301	0.153	0.049*	466	1.352		
STEM Career	-0.294	0.150	0.050	466	0.745		
Ordinal Logistic Regression Predicting Total Surveys Taken							
(Intercept)	0.310	0.168	0.065	466	1.364		
Comp. Usage	0.107	0.041	0.009**	466	1.113		
Math Class Eng.	0.089	0.042	0.034*	466	1.093		
Math Self Percep.	0.063	0.044	0.154	466	1.065		
STEM Career	-0.060	0.041	0.150	466	0.942		
*p < .05; **p < .01							

Determining Psychological Predictors for Attrition in a Longitudinal Study of STEM Persistence

Predicted Counts for Ordinal Reg.*

each predictor with all other predictors set at their respective mean.

METHODS

Participants: Middle schoolers interacting with CPI, n = 467 (241 Male), Mean Age = 12.43

Survey Timeline: Baseline, Sept. 2018 4 Follow-ups ("Pulse") in Dec. 2018, Feb. 2019, Apr. 2019, Jun. 2019

Attrition Rates by Survey

Factor COMPUTER USAGE MATH CLASS ENG MATH SELF PERCE STEM CAREER VAL

DISCUSSION

Follow up survey taking behavior is self-selective with attitudes about computer usage being the most consistently predictive of attrition across surveys and for predicting the total number of surveys taken.

Given this, longitudinal analysis must be done with great caution.

Survey attrition may be related to overall engagement with the app, suggesting further research regarding the effect of initial psychological STEM attitudes on app engagement.

Inconsistencies between surveys suggest potentially diverging administration protocol, highlighting the need for standardized administration to both mitigate variation in self-selection and attrition.

Allison Wan, Teresa Ober, Ph. D., Ying Cheng, Ph. D. Vassar College, University of Notre Dame

Distribution of

Four underlying psychological attitudes extracted using factor analysis that will be used to predict survey attrition (Table 1).

Composite score calculated for each student by taking the mean of all items composing a psychological attitude

Ordinal logistic regression predicting how many surveys a student took in total (1-5) based upon the the composite score for each psychological attitude.

Table 1: Psychological Attitudes Towards STEM

	Example Item (Likert Scale, 1 = Strongly Disagree 5 = Strongly Agree)	α
E (6 items)	I am good at working with computers.	0.77
AGEMENT (6 items)	My math class is interesting.	0.85
EPTIONS (9 items)	I see myself as a math person.	0.88
_UES (13 items)	I can imagine myself having a career in computer programming.	0.88

DETERMINING PSYCHOLOGICAL ATTITUDES

Exploratory and confirmatory factor analyses of scale items in the baseline survey to determine factor structure. (Final CFA, df=521, CFI=0.947, TLI = 0.943, RMSEA = 0.61).

PREDICTING SURVEY BEHAVIOR

Logistic regression predicting whether a survey was taken or not (1,0) based upon the the composite score for each psychological attitude.

REFERENCES

1. https://ywca-sv.org/curatedpathways-to-innovation/

ACKNOWLEDGEMENTS

This work was supported by National Science Foundation grant SMA-1852457: "REU Site: Computational Social Science at the University of Notre Dame"

